Search results
Results from the WOW.Com Content Network
Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]
The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space , right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also ...
Though these terms themselves may be somewhat ambiguous, they are usually used in a context in which their meaning is clear. For example, when referring to a drive shaft it is clear what is meant by axial or radial directions. Or, in a free body diagram, one may similarly infer a sense of orientation by the forces or other vectors represented.
Orientation (geometry), the direction in which a geometrical object is pointed Orientation (space) , the choice, in a space, between "clockwise" and "counterclockwise" Orientation (vector space) , the specific case of linear algebra
This definition relies on the fact that every simple closed curve admits a well-defined interior, which follows from the Jordan curve theorem. The inner loop of a beltway road in a country where people drive on the right side of the road is an example of a negatively oriented ( clockwise ) curve.
A torus is an orientable surface The Möbius strip is a non-orientable surface. Note how the disk flips with every loop. The Roman surface is non-orientable.. In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". [1]
The axes of the original frame are denoted as x, y, z and the axes of the rotated frame as X, Y, Z.The geometrical definition (sometimes referred to as static) begins by defining the line of nodes (N) as the intersection of the planes xy and XY (it can also be defined as the common perpendicular to the axes z and Z and then written as the vector product N = z × Z).
Rotation of an object in two dimensions around a point O.. Rotation in mathematics is a concept originating in geometry.Any rotation is a motion of a certain space that preserves at least one point.