Search results
Results from the WOW.Com Content Network
Align DNA, RNA, protein, or DNA + protein sequences via a variety of pairwise and multiple sequence alignment algorithms, generate phylogenetic trees to predict evolutionary relationships, explore sequence tracks to view GC content, gap fraction, sequence logos, translation ABI, DNA Multi-Seq, FASTA, GCG Pileup, GenBank, Phred
Overview of eukaryotic messenger RNA (mRNA) translation Translation of mRNA and ribosomal protein synthesis Initiation and elongation stages of translation involving RNA nucleobases, the ribosome, transfer RNA, and amino acids The three phases of translation: (1) in initiation, the small ribosomal subunit binds to the RNA strand and the initiator tRNA–amino acid complex binds to the start ...
Unlike cap-dependent translation, cap-independent translation does not require a 5' cap to initiate scanning from the 5' end of the mRNA until the start codon. The ribosome can localize to the start site by direct binding, initiation factors, and/or ITAFs (IRES trans-acting factors) bypassing the need to scan the entire 5' UTR. This method of ...
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
Thus translation and transcription are parallel processes. Bacterial mRNA are usually polycistronic and contain multiple ribosome binding sites. Translation initiation is the most highly regulated step of protein synthesis in prokaryotes. [5] The rate of translation depends on two factors: the rate at which a ribosome is recruited to the RBS
Translation in plants is tightly regulated as in animals, however, it is not as well understood as transcriptional regulation. There are several levels of regulation including translation initiation, mRNA turnover and ribosome loading. Recent studies have shown that translation is also under the control of the circadian clock.
The bacterial, archaeal and plant plastid code (translation table 11) is the DNA code used by bacteria, archaea, prokaryotic viruses and chloroplast proteins. It is essentially the same as the standard code , however there are some variations in alternative start codons .
Gene structure is the organisation of specialised sequence elements within a gene.Genes contain most of the information necessary for living cells to survive and reproduce. [1] [2] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.