Search results
Results from the WOW.Com Content Network
Printable version; Page information; Get shortened URL ... 1=Logarithm function as the inverse of an exponential, shown on the same graph together with the 45 ...
The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: = + = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ( x ⋅ y ) = ln x + ln y ...
The graph of the logarithm function log b (x) (blue) is obtained by reflecting the graph of the function b x (red) at the diagonal line (x = y). As discussed above, the function log b is the inverse to the exponential function x ↦ b x {\displaystyle x\mapsto b^{x}} .
The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface.
Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series
The binary logarithm function may be defined as the inverse function to the power of two function, which is a strictly increasing function over the positive real numbers and therefore has a unique inverse. [7] Alternatively, it may be defined as ln n/ln 2, where ln is the natural logarithm, defined in any of its standard ways.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.