Search results
Results from the WOW.Com Content Network
If D = 1, a unique solution exists: γ = 90°, i.e., the triangle is right-angled. If D < 1 two alternatives are possible. If b ≥ c, then β ≥ γ (the larger side corresponds to a larger angle). Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique.
Here is a definition of triangle geometry from 1887: "Being given a point M in the plane of the triangle, we can always find, in an infinity of manners, a second point M' that corresponds to the first one according to an imagined geometrical law; these two points have between them geometrical relations whose simplicity depends on the more or ...
The dihedral angle of a triangular cupola between square-to-triangle is approximately 125°, that between square-to-hexagon is 54.7°, and that between triangle-to-hexagon is 70.5°. Therefore, the dihedral angle of a cuboctahedron between square-to-triangle, on the edge where the base of two triangular cupolas are attached is 54.7° + 70.5 ...
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...
The ten lines involved in Desargues's theorem (six sides of triangles, the three lines Aa, Bb and Cc, and the axis of perspectivity) and the ten points involved (the six vertices, the three points of intersection on the axis of perspectivity, and the center of perspectivity) are so arranged that each of the ten lines passes through three of the ...
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
20 triangles 12 pentagons: 60 30 I h: Truncated dodecahedron: 3.10.10: 20 triangles 12 decagons: 90 60 I h: Truncated icosahedron: 5.6.6: 12 pentagons 20 hexagons 90 60 I h: Rhombicosidodecahedron: 3.4.5.4: 20 triangles 30 squares 12 pentagons 120 60 I h: Truncated icosidodecahedron: 4.6.10: 30 squares 20 hexagons 12 decagons 180 120 I h: Snub ...