Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
An orthogonal array is simple if it does not contain any repeated rows. (Subarrays of t columns may have repeated rows, as in the OA(18, 7, 3, 2) example pictured in this section.) An orthogonal array is linear if X is a finite field F q of order q (q a prime power) and the rows of the array form a subspace of the vector space (F q) k. [2]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
Original file (SVG file, nominally 350 × 350 pixels, file size: 23 KB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...