Search results
Results from the WOW.Com Content Network
The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...
Exhaust velocity is dependent on the propellant and engine used and closely related to specific impulse, the total energy delivered to the rocket vehicle per unit of propellant mass consumed. Mass ratio can also be affected by the choice of a given propellant.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The most important metric for the efficiency of a rocket engine is impulse per unit of propellant, this is called specific impulse (usually written ). This is either measured as a speed (the effective exhaust velocity in metres/second or ft/s) or as a time (seconds). For example, if an engine producing 100 pounds of thrust runs for 320 seconds ...
Specific impulse (usually abbreviated I sp) is a measure of how effectively a rocket uses propellant or jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed [4] and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. [5]
Δv is the desired change in the rocket's velocity; v e is the effective exhaust velocity (see specific impulse) m 0 is the initial mass (rocket plus contents plus propellant) m 1 is the final mass (rocket plus contents) This equation can be rewritten in the following equivalent form: = /
Spacecraft performance can be quantified in amount of change in momentum per unit of propellant consumed, also called specific impulse. This is a measure of the amount of impulse that can be obtained from a fixed amount of reaction mass. The higher the specific impulse, the better the efficiency.
Because a rocket must carry all of its reaction mass, most of the initially-expended reaction mass goes towards accelerating reaction mass rather than payload. If the rocket has a payload of mass P, the spacecraft needs to change its velocity by , and the rocket engine has exhaust velocity v e, then the reaction mass M which is needed can be ...