Search results
Results from the WOW.Com Content Network
The Darcy-Weisbach equation, combined with the Moody chart for calculating head losses in pipes, is traditionally attributed to Henry Darcy, Julius Weisbach, and Lewis Ferry Moody. However, the development of these formulas and charts also involved other scientists and engineers over its historical development.
In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
1.1 Darcy–Weisbach equation. 1.2 Lung compliance. 1.2.1 Dynamic compliance (C dyn) 1.2.2 Static compliance (C stat) 2 See also. 3 References. 4 External links.
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
The Darcy-Weisbach equation can be used equivalently with either the fanning friction factor or the Darcy Weisbach friction factor, however if the fanning factor is used the diameter D in the equation must be replaced with the hydraulic radius.74.60.57.253 04:16, 4 November 2009 (UTC)
The initial conditions exist at point 1. Point 2 exists at the nozzle throat, where M = 1. Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for ...
This was originally produced to describe the Moody chart, which plots the Darcy-Weisbach Friction factor against Reynolds number. The Darcy Weisbach Formula f D {\displaystyle f_{D}} , also called Moody friction factor, is 4 times the Fanning friction factor f {\displaystyle f} and so a factor of 1 4 {\displaystyle {\frac {1}{4}}} has been ...