Ad
related to: how do you calculate water flow rate meter for copper tubingnortherntool.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
This depth is converted to a flow rate according to a theoretical formula of the form = where is the flow rate, is a constant, is the water level, and is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then be integrated over time into ...
A compound meter is used where high flow rates are necessary, but where at times there are also smaller rates of flow that need to be accurately measured. Compound meters have two measuring elements and a check valve to regulate flow between them. At high flow rates, water is normally diverted primarily or completely to the high flow element.
The bodies of fittings for pipe and tubing are often the same base material as the pipe or tubing connected: copper, steel, PVC, CPVC, or ABS. Any material permitted by the plumbing, health, or building code (as applicable) may be used, but it must be compatible with the other materials in the system, the fluids being transported, and the ...
Soft (or ductile) copper tubing can be bent easily to travel around obstacles in the path of the tubing. While the work hardening of the drawing process used to size the tubing makes the copper hard or rigid, it is carefully annealed to make it soft again; it is, therefore, more expensive to produce than non-annealed, rigid copper tubing.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]
First, a static pressure gauge is attached to the test hydrant and the static water pressure is measured at the test hydrant. Second, the flow hydrant opened to allow water to flow in a fully open condition. Simultaneously the pitot tube pressure is recorded from the flow hydrant while the residual pressure is measured from the test hydrant.
Ad
related to: how do you calculate water flow rate meter for copper tubingnortherntool.com has been visited by 100K+ users in the past month