Search results
Results from the WOW.Com Content Network
English: Causes of high anion-gap metabolic acidosis Mnemonic "CAT MUDPILES": Carbon monoxide, Cyanide, Congenital; heart failure Aminoglycosides; Teophylline, Toluene (Glue-sniffing)
High anion gap metabolic acidosis is a form of metabolic acidosis characterized by a high anion gap (a medical value based on the concentrations of ions in a patient's serum). Metabolic acidosis occurs when the body produces too much acid , or when the kidneys are not removing enough acid from the body.
The calculated value of the anion gap should always be adjusted for variations in the serum albumin concentration. [15] For example, in cases of hypoalbuminemia the calculated value of the anion gap should be increased by 2.3 to 2.5 mEq/L per each 1 g/dL decrease in serum albumin concentration (refer to Sample calculations, below).
Elevated protein (albumin, globulins) may theoretically increase the anion gap but high levels are not usually encountered clinically. Hypoalbuminaemia, which is frequently encountered clinically, will mask an anion gap. As a rule of thumb, a decrease in serum albumin by 1 G/L will decrease the anion gap by 0.25 mmol/L [citation needed]
Hyperchloremic acidosis is a form of metabolic acidosis associated with a normal anion gap, a decrease in plasma bicarbonate concentration, and an increase in plasma chloride concentration [1] (see anion gap for a fuller explanation).
Urine NH 4 + is difficult to measure directly, but its excretion is usually accompanied by the anion chloride. A negative urine anion gap can be used as evidence of increased NH 4 + excretion. In a metabolic acidosis without a serum anion gap: A positive urine anion gap suggests a low urinary NH 4 + (e.g. renal tubular acidosis).
The serum anion gap is useful for determining whether a base deficit is caused by addition of acid or loss of bicarbonate. Base deficit with elevated anion gap indicates addition of acid (e.g., ketoacidosis). Base deficit with normal anion gap indicates loss of bicarbonate (e.g., diarrhea).
Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap. [3]