enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orders of magnitude (energy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

    Mass–energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729) [309] 8.8×10 47 J GRB 080916C – formerly the most powerful gamma-ray burst (GRB) ever recorded – total/true [ 310 ] isotropic energy output estimated at 8.8 × 10 47 joules (8.8 × 10 54 erg), or 4.9 times the Sun's mass ...

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Without friction to dissipate a body's energy into heat, the body's energy will trade between potential and (non-thermal) kinetic forms while the total amount remains constant. Any gain of kinetic energy, which occurs when the net force on the body accelerates it to a higher speed, must be accompanied by a loss of potential energy.

  4. List of gravitational wave observations - Wikipedia

    en.wikipedia.org/wiki/List_of_gravitational_wave...

    Known gravitational wave events come from the merger of two black holes (BH), two neutron stars (NS), or a black hole and a neutron star (BHNS). [ 9 ] [ 10 ] Some objects are in the mass gap between the largest predicted neutron star masses ( Tolman–Oppenheimer–Volkoff limit ) and the smallest known black holes.

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Vector field (blue) and its associated scalar potential field (red). Point P between earth and moon is the point of equilibrium. In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. [6]

  6. Lagrange point - Wikipedia

    en.wikipedia.org/wiki/Lagrange_point

    A contour plot of the effective potential due to gravity and the centrifugal force of a two-body system in a rotating frame of reference. The arrows indicate the downhill gradients of the potential around the five Lagrange points, toward them (red) and away from them (blue). Counterintuitively, the L 4 and L 5 points are the high points of the ...

  7. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    The orbits of these binary pulsars are decaying due to loss of energy in the form of gravitational radiation. The rate of this energy loss ("gravitational damping") can be measured, and since it depends on the speed of gravity, comparing the measured values to theory shows that the speed of gravity is equal to the speed of light to within 1%. [22]

  8. Gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Gravity_anomaly

    The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression.

  9. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    For a similar process at constant temperature and volume, the change in Helmholtz free energy must be negative, <. Thus, a negative value of the change in free energy (G or A) is a necessary condition for a process to be spontaneous. This is the most useful form of the second law of thermodynamics in chemistry, where free-energy changes can be ...