Ad
related to: examples of decimal expansion of fractionsEducation.com is great and resourceful - MrsChettyLife
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Digital Games
Search results
Results from the WOW.Com Content Network
In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
For example, the decimal expressions ,,,, represent the fractions 4 / 5 , 1489 / 100 , 79 / 100000 , + 809 / 500 and + 314159 / 100000 , and therefore denote decimal fractions. An example of a fraction that cannot be represented by a decimal expression (with a finite number of digits) is 1 / 3 , 3 not ...
For example, the continued fraction expansion for ... For example, the decimal representation 3.1416 could be rounded from any number in the interval ...
The fraction 99 / 70 (≈ 1.4142857) is sometimes used as a good rational approximation with a reasonably small denominator. Sequence A002193 in the On-Line Encyclopedia of Integer Sequences consists of the digits in the decimal expansion of the square root of 2, here truncated to 65 decimal places: [ 2 ]
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
The continued fraction representation of a real number can be used instead of its decimal or binary expansion and this representation has the property that the square root of any rational number (which is not already a perfect square) has a periodic, repeating expansion, similar to how rational numbers have repeating expansions in the decimal ...
Ad
related to: examples of decimal expansion of fractionsEducation.com is great and resourceful - MrsChettyLife