Search results
Results from the WOW.Com Content Network
A drawback of polynomial bases is that the basis functions are "non-local", meaning that the fitted value of y at a given value x = x 0 depends strongly on data values with x far from x 0. [9] In modern statistics, polynomial basis-functions are used along with new basis functions , such as splines , radial basis functions , and wavelets .
The first term is the objective function from ordinary least squares (OLS) regression, corresponding to the residual sum of squares. The second term is a regularization term, not present in OLS, which penalizes large values. As a smooth finite dimensional problem is considered and it is possible to apply standard calculus tools.
For example, the length of the shift vector may be successively halved until the new value of the objective function is less than its value at the last iteration. The fraction, f could be optimized by a line search. [4] As each trial value of f requires the objective function to be re-calculated it is not worth optimizing its value too stringently.
Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.
Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm , low-rank approximation of the data matrix.
Example of a cubic polynomial regression, which is a type of linear regression. Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial ...