Search results
Results from the WOW.Com Content Network
Mechanics (from Ancient Greek μηχανική (mēkhanikḗ) 'of machines') [1] [2] is the area of physics concerned with the relationships between force, matter, and motion among physical objects. [3]
fluid mechanics fluid physics fluid statics fluorescence flux flux density focal length focus force (F) A push or pull. Any interaction that, when unopposed, will change the motion of a physical body. A force has both magnitude and direction, making it a vector quantity. The SI unit used to measure force is the newton. force carrier Force field ...
mechanical work: joule (J) width: meter (m) electrical reactance: ohm (Ω) position vector: meter (m) displacement: meter (m) a generic unknown: varied depending on context admittance: siemens (S) compressibility factor: unitless electrical impedance
In physics, a mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a material medium. [1] (Vacuum is, from classical perspective, a non-material medium, where electromagnetic waves propagate.) While waves can move over long distances, the movement of the medium of transmission—the material—is ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
Classical mechanics is a physical theory describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved substantial change in the methods and philosophy of physics. [1]
Classical mechanics is a model of the physics of forces acting upon bodies; includes sub-fields to describe the behaviors of solids, gases, and fluids.It is often referred to as "Newtonian mechanics" after Isaac Newton and his laws of motion.
Stress analysis is a branch of applied physics that covers the determination of the internal distribution of internal forces in solid objects. It is an essential tool in engineering for the study and design of structures such as tunnels, dams, mechanical parts, and structural frames, under prescribed or expected loads.