enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    James Clerk Maxwell's 1865 prediction [46] that light was an electromagnetic wave – which was confirmed experimentally in 1888 by Heinrich Hertz's detection of radio waves [47] – seemed to be the final blow to particle models of light. In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete.

  3. Corpuscular theory of light - Wikipedia

    en.wikipedia.org/wiki/Corpuscular_theory_of_light

    The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time polarization was ...

  4. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    Light exerts physical pressure on objects in its path, a phenomenon which can be deduced by Maxwell's equations, but can be more easily explained by the particle nature of light: photons strike and transfer their momentum. Light pressure is equal to the power of the light beam divided by c, the speed of light.

  5. Optical phenomenon - Wikipedia

    en.wikipedia.org/wiki/Optical_phenomenon

    Optical phenomena are any observable events that result from the interaction of light and matter. All optical phenomena coincide with quantum phenomena. [ 1 ] Common optical phenomena are often due to the interaction of light from the Sun or Moon with the atmosphere, clouds, water, dust, and other particulates.

  6. Photoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Photoelectric_effect

    The phenomenon is studied in condensed matter physics, solid state, and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.

  7. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons.

  8. Tyndall effect - Wikipedia

    en.wikipedia.org/wiki/Tyndall_effect

    The Tyndall effect is seen when light-scattering particulate matter is dispersed in an otherwise light-transmitting medium, where the diameter of an individual particle is in the range of roughly 40 to 900 nm, i.e. somewhat below or near the wavelengths of visible light (400–750 nm).

  9. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    Some phenomena depend on light having both wave-like and particle-like properties. Explanation of these effects requires quantum mechanics. When considering light's particle-like properties, the light is modelled as a collection of particles called "photons". Quantum optics deals with the application of quantum mechanics to optical systems.