enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    If the dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself).

  3. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions ...

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction.

  5. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    If two vectors are parallel or are anti-parallel (that is, they are linearly dependent), or if either one has zero length, then their cross product is zero. [ 2 ] The cross product is anticommutative (that is, a × b = − b × a ) and is distributive over addition, that is, a × ( b + c ) = a × b + a × c . [ 1 ]

  6. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    In 1835 Giusto Bellavitis introduced the idea of equipollent directed line segments which resulted in the concept of a vector as an equivalence class of such segments.. The term vector was coined by W. R. Hamilton around 1843, as he revealed quaternions, a system which uses vectors and scalars to span a four-dimensional space.

  7. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...

  8. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    The dot product of two vectors A = [A 1, A 2] and B = [B 1, B 2] is defined as: [5] = + A vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction the arrow points.

  9. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.