Search results
Results from the WOW.Com Content Network
Simple feedback control loop block diagram: Date: 22 January 2012, 06:18 (UTC) Source: This file was derived from: Simple feedback control loop2.png: Author: Simple_feedback_control_loop2.png: Corona; derivative work: Rehua (talk) Other versions.svg:
There are three types of control systems: open loop, feed-forward, and feedback. An example of a pure open loop control system is manual non-power-assisted steering of a motor car; the steering system does not have access to an auxiliary power source and does not respond to varying resistance to turning of the direction wheels; the driver must ...
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
The control system performance can be improved by combining the feedback (or closed-loop) control of a PID controller with feed-forward (or open-loop) control. Knowledge about the system (such as the desired acceleration and inertia) can be fed forward and combined with the PID output to improve the overall system performance.
However, this loop alone would not provide satisfactory control, because of the delay; this loop is feeding back outdated information. Intuitively, for the k sample intervals during which no fresh information is available, the system is controlled by the inner loop which contains a predictor of what the (unobservable) output of the plant G ...
Feed-forward control computes its input into a system using only the current state and its model of the system. It does not use feedback, so it cannot correct for errors in its control. In feedback control, some of the output of the system can be fed back into the system's input, and the system is then able to make adjustments or compensate for ...