enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cell cycle checkpoint - Wikipedia

    en.wikipedia.org/wiki/Cell_cycle_checkpoint

    In eukaryotes, the cell cycle consists of four main stages: G 1, during which a cell is metabolically active and continuously grows; S phase, during which DNA replication takes place; G 2, during which cell growth continues and the cell synthesizes various proteins in preparation for division; and the M phase, during which the duplicated ...

  3. Cell cycle - Wikipedia

    en.wikipedia.org/wiki/Cell_cycle

    The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.

  4. G2-M DNA damage checkpoint - Wikipedia

    en.wikipedia.org/wiki/G2-M_DNA_damage_checkpoint

    Steps of the cell cycle. The G 2-M checkpoint occurs between the G 2 and M phases. G2-M arrest. The G 2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired.

  5. Restriction point - Wikipedia

    en.wikipedia.org/wiki/Restriction_point

    Steps of the cell cycle. The restriction point occurs between the G 1 and S phases of interphase.. The restriction point (R), also known as the Start or G 1 /S checkpoint, is a cell cycle checkpoint in the G 1 phase of the animal cell cycle at which the cell becomes "committed" to the cell cycle, and after which extracellular signals are no longer required to stimulate proliferation. [1]

  6. Biochemical switches in the cell cycle - Wikipedia

    en.wikipedia.org/wiki/Biochemical_switches_in...

    In investigation of cell cycle regulation, Jin et al. manipulated cells in order to evaluate the localization of cyclin B in cells with DNA damage. Through combination of DNA damage and nuclear localization of exogenous cyclin B, they were able to determine that cells would divide even with DNA damage if the cyclin B were forced to be expressed ...

  7. G1/S transition - Wikipedia

    en.wikipedia.org/wiki/G1/S_transition

    Depiction of regulation at the G1/S transition point in cell cycle progression Cell cycle Signal transduction pathways influencing gene regulation and cellular proliferation. The G1/S transition is a stage in the cell cycle at the boundary between the G1 phase, in which the cell grows, and the S phase, during which DNA is replicated. [1]

  8. Cyclin D - Wikipedia

    en.wikipedia.org/wiki/Cyclin_D

    Given that many human cancers happen in response to errors in cell cycle regulation and in growth factor dependent intracellular pathways, involvement of cyclin D in cell cycle control and growth factor signaling makes it a possible oncogene. In normal cells overproduction of cyclin D shortens the duration of G1 phase only, and considering the ...

  9. Novak–Tyson model - Wikipedia

    en.wikipedia.org/wiki/Novak–Tyson_model

    The Novak–Tyson Model is a non-linear dynamics framework developed in the context of cell-cycle control by Bela Novak and John J. Tyson. It is a prevalent theoretical model that describes a hysteretic , bistable bifurcation of which many biological systems have been shown to express.