Search results
Results from the WOW.Com Content Network
The velocity of the charged particle after acceleration will not change since it moves in a field-free time-of-flight tube. The velocity of the particle can be determined in a time-of-flight tube since the length of the path (d) of the flight of the ion is known and the time of the flight of the ion (t) can be measured using a transient digitizer or time to digital converter.
nanosecond: 10 −9 s: One billionth of a second. Time for molecules to fluoresce. shake: 10 −8 s: 10 nanoseconds, also a casual term for a short period of time. microsecond: 10 −6 s: One millionth of a second. Symbol is μs millisecond: 10 −3 s: One thousandth of a second. Shortest time unit used on stopwatches. jiffy (electronics) ~ 10 ...
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, 1 / 1 000 000 000 of a second, or 10 −9 seconds. The term combines the SI prefix nano- indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre , etc.) and second , the primary unit of time in ...
The speed of light is 299,792,458 metres per second (983,571,056 ft/s), or about one foot per nanosecond. If it were exactly one foot per nanosecond, and a target was one data mile away, then the radar return from that target would arrive 12 microseconds after the transmission.
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, 1 / 1 000 000 000 of a second, or 10 −9 seconds. The term combines the SI prefix nano-indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre, etc.) and second, the primary unit of time in the SI.
The light-nanosecond is defined as exactly 29.9792458 cm. It was popularized in information technology as a unit of distance by Grace Hopper as the distance which a photon could travel in one billionth of a second (roughly 30 cm or one foot): "The speed of light is one foot per nanosecond." [6] [7]
A microsecond is equal to 1000 nanoseconds or 1 ⁄ 1,000 of a millisecond. Because the next SI prefix is 1000 times larger, measurements of 10 −5 and 10 −4 seconds are typically expressed as tens or hundreds of microseconds.
[1] [2] In asynchronous DRAM, the interval is specified in nanoseconds (absolute time). [3] In synchronous DRAM , the interval is specified in clock cycles. Because the latency is dependent upon a number of clock ticks instead of absolute time, the actual time for an SDRAM module to respond to a CAS event might vary between uses of the same ...