Search results
Results from the WOW.Com Content Network
Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's complement) signed nets and variables. Previously, code authors had to perform signed operations using awkward bit-level manipulations (for example, the carry-out bit of a simple 8-bit addition required an explicit description of the Boolean algebra ...
Verilog-AMS is a derivative of the Verilog hardware description language that includes Analog and Mixed-Signal extensions (AMS) in order to define the behavior of analog and mixed-signal systems. It extends the event-based simulator loops of Verilog/ SystemVerilog / VHDL , by a continuous-time simulator, which solves the differential equations ...
Verilog-A was an all-analog subset of Verilog-AMS that was the project's first phase. There was considerable delay between the first Verilog-A language reference manual and the full Verilog-AMS , and in that time Verilog moved to the IEEE, leaving Verilog-AMS behind at Accellera .
The original Verilog simulator, Gateway Design's Verilog-XL was the first (and only, for a time) Verilog simulator to be qualified for ASIC (validation) sign-off. After its acquisition by Cadence Design Systems, Verilog-XL changed very little over the years, retaining an interpreted language engine, and freezing language-support at Verilog-1995.
Icarus Verilog is an implementation of the Verilog hardware description language compiler that generates netlists in the desired format and a simulator. It supports the 1995, 2001 and 2005 versions of the standard, portions of SystemVerilog , and some extensions.
SystemVerilog for register-transfer level (RTL) design is an extension of Verilog-2005; all features of that language are available in SystemVerilog. Therefore, Verilog is a subset of SystemVerilog. SystemVerilog for verification uses extensive object-oriented programming techniques and is more closely related to Java than Verilog. These ...
The Verilog Procedural Interface (VPI), originally known as PLI 2.0, is an interface primarily intended for the C programming language.It allows behavioral Verilog code to invoke C functions, and C functions to invoke standard Verilog system tasks.
Register-transfer-level abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level representations of a circuit, from which lower-level representations and ultimately actual wiring can be derived. Design at the RTL level is typical practice in modern digital design.