enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  3. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  4. RCNN - Wikipedia

    en.wikipedia.org/wiki/RCNN

    RCNN is a two- stage object detection algorithm. the first stage is to identifies a subset of regions in an image that might contain an object to be detected while the second stage is to classifies the object in each region AI base CNN model plays a vital role in pre-trained convolutional neural network used as the starting point for training a ...

  5. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Classification, object detection 2005 [33] MIT Computer Science and Artificial Intelligence Laboratory: PASCAL VOC Dataset Images in 20 categories and localization bounding boxes. Labeling, bounding box included 500,000 Images, text Classification, object detection 2010 [34] [35] M. Everingham et al. CIFAR-10 Dataset

  6. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    Image Classification, Object Detection, Video Deepfake Detection, [41] Image segmentation, [42] Anomaly detection, Image Synthesis, Cluster analysis, Autonomous Driving. [6] [7] ViT had been used for image generation as backbones for GAN [43] and for diffusion models (diffusion transformer, or DiT). [44]

  7. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  8. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    The models and the code were released under Apache 2.0 license on GitHub. [4] An individual Inception module. On the left is a standard module, and on the right is a dimension-reduced module. A single Inception dimension-reduced module. The Inception v1 architecture is a deep CNN composed of 22 layers. Most of these layers were "Inception modules".

  9. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.