enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding one root; Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work ...

  3. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    In mathematics, Graeffe's method or Dandelin–Lobachesky–Graeffe method is an algorithm for finding all of the roots of a polynomial.It was developed independently by Germinal Pierre Dandelin in 1826 and Lobachevsky in 1834.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  5. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  6. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...

  7. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a recursive method that generates a new approximation of a root ξ of f at each iteration using the three prior iterations. Starting with three initial values x 0, x −1 and x −2, the first iteration calculates an approximation x 1 using those three, the second iteration calculates an approximation x 2 using x 1, x 0 and x −1, the third iteration calculates an ...

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  9. Jenkins–Traub algorithm - Wikipedia

    en.wikipedia.org/wiki/Jenkins–Traub_algorithm

    In the algorithm, proper roots are found one by one and generally in increasing size. After each root is found, the polynomial is deflated by dividing off the corresponding linear factor. Indeed, the factorization of the polynomial into the linear factor and the remaining deflated polynomial is already a result of the root-finding procedure.