Search results
Results from the WOW.Com Content Network
Time-of-flight diffraction (TOFD) method of ultrasonic testing is a sensitive and accurate method for the nondestructive testing of welds for defects. TOFD originated from tip diffraction techniques which were first published by Silk and Liddington [1] in 1975 which paved the way for TOFD. Later works on this technique are given in a number of ...
Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a way to learn about the particle or medium's properties (such as composition or flow rate).
Time-of-flight spectrometers at pulsed sources include Pharos at LANSCE's Lujan Center at Los Alamos National Laboratory, MAPS, MARI, HET, MERLIN and LET at the ISIS neutron source, and ARCS, CNCS, and SEQUOIA at the Spallation Neutron Source, [1] iBIX, SuperHRPD, PLANET, SENJU, TAKUMI, iMATERIA and NOVA at the J-PARC and SKAT-EPSILON, DIN-2PI, NERA at the IBR-2 pulsed reactor.
The Neutron Time Of Flight (n_TOF) facility is a neutron spectrometer at CERN, with the aim of studying neutron-nucleus interactions over a range of kinetic energies, using the time of flight method. The research conducted at the facility has applications in nuclear technology and nuclear astrophysics . [ 1 ]
Pearl is a neutron diffractometer dedicated to high-pressure powder diffraction. Polaris is a neutron diffractometer optimised for the rapid characterisation of structures, the study of small amounts of materials, the collection of data sets in rapid time, and the studies of materials under non-ambient conditions.
Advanced ultrasonic techniques such as time of flight diffraction and phased-array ultrasonics (PAUT) are being increasingly studied and used for inspecting plastic pipeline welds. [2] Research in the use of optical coherence tomography (OCT) and microwave reflectrometry has also been conducted. [3] [4]
A time-of-flight (TOF) detector is a particle detector which can discriminate between a lighter and a heavier elementary particle of same momentum using their time of flight between two scintillators [1]. The first of the scintillators activates a clock upon being hit while the other stops the clock upon being hit.
A common observation technique is time of flight (TOF) imaging. TOF imaging works by first waiting some amount of time for the atoms to evolve in the lattice potential, then turning off the lattice potential (by switching off the laser power with an AOM). The atoms, now free, spread out at different rates according to their momenta.