Search results
Results from the WOW.Com Content Network
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass m through a surface per unit time t. The overdot on the m is Newton's notation for a time derivative . Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
TITAN2D is a free software application developed by the Geophysical Mass Flow Group at the State University of New York (SUNY) at Buffalo. TITAN2D was developed for the purpose of simulating granular flows (primarily geological mass flows such as debris avalanches and landslides) over digital elevation models (DEM)s of natural terrain.
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., =).
Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as =, where Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi).
The mass flow rate is the mass of the fluid traveling past a fixed point per unit time. The mass flow meter does not measure the volume per unit time (e.g. cubic meters per second) passing through the device; it measures the mass per unit time (e.g. kilograms per second) flowing through the device. Volumetric flow rate is the mass flow rate ...
The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows: