Search results
Results from the WOW.Com Content Network
Global distribution of Vapour-pressure deficit averaged over the years 1981-2010 from the CHELSA-BIOCLIM+ data set [1] Vapour pressure-deficit, or VPD, is the difference (deficit) between the amount of moisture in the air and how much moisture the air can hold when it is saturated. Once air becomes saturated, water will condense to form clouds ...
This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids. [7] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi.
The Lee–Kesler method [1] allows the estimation of the saturated vapor pressure at a given temperature for all components for which the critical pressure P c, the critical temperature T c, and the acentric factor ω are known.
δe = vapor pressure deficit (Pa) g a = Conductivity of air, atmospheric conductance (m s −1) g s = Conductivity of stoma, surface or stomatal conductance (m s −1) γ = Psychrometric constant (γ ≈ 66 Pa K −1) Note: Often, resistances are used rather than conductivities.
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
A saturation dome uses the projection of a P–v–T diagram (pressure, specific volume, and temperature) onto the P–v plane. The points that create the left-hand side of the dome represent the saturated liquid states, while the points on the right-hand side represent the saturated vapor states (commonly referred to as the “dry” region).
Stomatal conductance, usually measured in mmol m −2 s −1 by a porometer, estimates the rate of gas exchange (i.e., carbon dioxide uptake) and transpiration (i.e., water loss as water vapor) through the leaf stomata as determined by the degree of stomatal aperture (and therefore the physical resistances to the movement of gases between the air and the interior of the leaf).
Köhler theory combines the Kelvin effect, which describes the change in vapor pressure due to a curved surface, with Raoult's Law, which relates the vapor pressure to the solute concentration. [ 1 ] [ 2 ] [ 3 ] It was initially published in 1936 by Hilding Köhler , Professor of Meteorology in the Uppsala University.