Search results
Results from the WOW.Com Content Network
To convert heat values to joules per mole values, multiply by 44.095 g/mol. To convert densities to moles per liter, multiply by 22.678 cm 3 mol/(L·g). Data obtained from CRC Handbook of Chemistry and Physics , 44th ed. pages 2560–2561, except for critical temperature line (31.1 °C) and temperatures −30 °C and below, which are taken from ...
An enthalpy–entropy chart, also known as the H–S chart or Mollier diagram, plots the total heat against entropy, [1] describing the enthalpy of a thermodynamic system. [2] A typical chart covers a pressure range of 0.01–1000 bar , and temperatures up to 800 degrees Celsius . [ 3 ]
There are four types of enthalpy changes resulting from a phase transition. To wit: Enthalpy of transformation. This applies to the transformations from one solid phase to another, such as the transformation from α-Fe (bcc ferrite) to -Fe (fcc austenite). The transformation is designated ΔH tr. Enthalpy of fusion or melting.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Carbon dioxide: Gas CO 2: −393.509 Carbon disulfide: Liquid CS 2: 89.41 Carbon disulfide: Gas CS 2: 116.7 Carbon monoxide: Gas CO −110.525 Carbonyl chloride Gas COCl 2: −218.8 Carbon dioxide (un–ionized) Aqueous CO 2 (aq) −419.26 Bicarbonate ion Aqueous HCO 3 – −689.93 Carbonate ion Aqueous CO 3 2– −675.23 Monatomic chlorine ...
It is the disproportionation of carbon monoxide into carbon dioxide and graphite or its reverse: [1] 2CO ⇌ CO 2 + C Boudouard-Equilibrium at 1 bar calculated with 2 different methods Standard enthalpy of the Boudouard reaction at various temperatures. The Boudouard reaction to form carbon dioxide and carbon is exothermic at all
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds