Search results
Results from the WOW.Com Content Network
Thermal emittance or thermal emissivity is the ratio of the radiant emittance of heat of a specific object or surface to that of a standard black body.Emissivity and emittivity are both dimensionless quantities given in the range of 0 to 1, representing the comparative/relative emittance with respect to a blackbody operating in similar conditions, but emissivity refers to a material property ...
Black soot absorbs thermal radiation very well; it has an emissivity as large as 0.97, and hence soot is a fair approximation to an ideal black body. [21] [22] With the exception of bare, polished metals, the appearance of a surface to the eye is not a good guide to emissivities near room temperature.
As quoted from this source in an online version of: J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 4; Table 4.1, Electronic Configuration and Properties of the Elements Touloukian, Y. S., Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, Plenum, New York, 1975.
Emissivity can in general depend on wavelength, direction, and polarization. However, the emissivity which appears in the non-directional form of the Stefan–Boltzmann law is the hemispherical total emissivity, which reflects emissions as totaled over all wavelengths, directions, and polarizations. [3]: 60
The thermal inertia of a terrestrial planet such as Mars can be approximated from the thermal effusivity of its near-surface geologic materials. In remote sensing applications, thermal inertia represents a complex combination of particle size, rock abundance, bedrock outcropping and the degree of induration (i.e. thickness and hardness). [9]
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds
Further, one may define the emissivity ε ν,X (T X) of the material of the body X just so that at thermodynamic equilibrium at temperature T X = T, one has I ν,X (T X) = I ν,X (T) = ε ν,X (T) B ν (T). When thermal equilibrium prevails at temperature T = T X = T Y, the rate of accumulation of energy vanishes so that q(ν,T X,T Y) = 0.
Kirchhoff's law of thermal radiation has a refinement in that not only is thermal emissivity equal to absorptivity, it is equal in detail. Consider a leaf. It is a poor absorber of green light (around 470 nm), which is why it looks green. By the principle of detailed balance, it is also a poor emitter of green light.