Search results
Results from the WOW.Com Content Network
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.
Sum of Natural Numbers (second proof and extra footage) includes demonstration of Euler's method. What do we get if we sum all the natural numbers? response to comments about video by Tony Padilla; Related article from New York Times; Why –1/12 is a gold nugget follow-up Numberphile video with Edward Frenkel
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached.
The number 19 is not a harshad number in base 10, because the sum of the digits 1 and 9 is 10, and 19 is not divisible by 10. In base 10, every natural number expressible in the form 9R n a n, where the number R n consists of n copies of the single digit 1, n > 0, and a n is a positive integer less than 10 n and multiple of n, is a harshad ...
We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, that is, the divisors of n excluding n itself. This function is used to recognize perfect numbers, which are the n such that s(n) = n. If s(n) > n, then n is an abundant number, and if s(n) < n, then n is a deficient number.
In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.