Search results
Results from the WOW.Com Content Network
Le Bel-van't Hoff rule states that for a structure with n asymmetric carbon atoms, there is a maximum of 2 n different stereoisomers possible. As an example, D-glucose is an aldohexose and has the formula C 6 H 12 O 6. Four of its six carbon atoms are stereogenic, which means D-glucose is one of 2 4 =16 possible stereoisomers. [20] [21]
As an example, four of the carbon atoms of the aldohexose class of molecules are asymmetric, therefore the Le Bel–Van 't Hoff rule gives a calculation of 2 4 = 16 stereoisomers. This is indeed the case: these chemicals are two enantiomers each of eight different diastereomers : allose , altrose , glucose , mannose , gulose , idose , galactose ...
Number of C atoms Number of isomers [3] [4] Number of isomers including stereoisomers [3] [5] Molecular Formula Name of straight chain Synonyms 1 1 1 CH 4: methane: methyl hydride; natural gas
However, the stereoisomers produced may also give a meso compound, which is an achiral compound that is superposable on its mirror image; the presence of a meso compound will reduce the number of possible stereoisomers. [4] Since a meso compound is superposable on its mirror image, the two "stereoisomers" are actually identical.
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
In stereochemistry, an asymmetric carbon is a carbon atom that is bonded to four different types of atoms or groups of atoms. [1] [2] The four atoms and/or groups attached to the carbon atom can be arranged in space in two different ways that are mirror images of each other, and which lead to so-called left-handed and right-handed versions (stereoisomers) of the same molecule.
The possibilities for different isomers continue to multiply as more stereocenters are added to a molecule. In general, the number of stereoisomers of a molecule can be determined by calculating 2 n, where n = the number of chiral centers in the molecule. This holds true except in cases where the molecule has meso forms.
A molecule may contain any number of stereocenters and any number of double bonds, and each usually gives rise to two possible isomers. A molecule with an integer n describing the number of stereocenters will usually have 2 n stereoisomers, and 2 n−1 diastereomers each having an associated pair of enantiomers.