Search results
Results from the WOW.Com Content Network
This can be achieved by defining tensors in terms of elements of tensor products of vector spaces, which in turn are defined through a universal property as explained here and here. A type (p, q) tensor is defined in this context as an element of the tensor product of vector spaces, [9] [10]
Mathematically vectors are elements of a vector space over a field, and for use in physics is usually defined with = or .Concretely, if the dimension = of is finite, then, after making a choice of basis, we can view such vector spaces as or .
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):
Another interpretation of the metric tensor, also considered by Gauss, is that it provides a way in which to compute the length of tangent vectors to the surface, as well as the angle between two tangent vectors. In contemporary terms, the metric tensor allows one to compute the dot product(non-euclidean geometry) of tangent vectors in a manner ...
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...
Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric. For example, an event in spacetime may be represented as a position four-vector , with coherent derived unit of meters: it includes a position Euclidean vector and a timelike component, t ⋅ c 0 (involving the speed ...
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.