enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    In this equation, we used sup and inf instead of max and min because the graph (,) does not have to be locally finite (i.e., to have finite degrees): a key example is when () is the set of points in a domain in , and (,) if their Euclidean distance is at most . The importance of this example lies in the following.

  4. Elliptic operator - Wikipedia

    en.wikipedia.org/wiki/Elliptic_operator

    A solution to Laplace's equation defined on an annulus.The Laplace operator is the most famous example of an elliptic operator.. In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator.

  5. Harmonic function - Wikipedia

    en.wikipedia.org/wiki/Harmonic_function

    In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function:, where U is an open subset of ⁠, ⁠ that satisfies Laplace's equation, that is, + + + = everywhere on U.

  6. Superposition principle - Wikipedia

    en.wikipedia.org/wiki/Superposition_principle

    For example, in Laplace's equation with Dirichlet boundary conditions, F would be the Laplacian operator in a region R, G would be an operator that restricts y to the boundary of R, and z would be the function that y is required to equal on the boundary of R.

  7. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...

  8. Laplacian vector field - Wikipedia

    en.wikipedia.org/wiki/Laplacian_vector_field

    However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field v = ( x y , y z , z x ) {\displaystyle {\bf {v}}=(xy,yz,zx)} satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a ...

  9. Potential theory - Wikipedia

    en.wikipedia.org/wiki/Potential_theory

    In mathematics and mathematical physics, potential theory is the study of harmonic functions.. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which ...