enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    In this equation, we used sup and inf instead of max and min because the graph (,) does not have to be locally finite (i.e., to have finite degrees): a key example is when () is the set of points in a domain in , and (,) if their Euclidean distance is at most . The importance of this example lies in the following.

  4. Method of image charges - Wikipedia

    en.wikipedia.org/wiki/Method_of_image_charges

    Diagram illustrating the image method for Laplace's equation for a sphere of radius R. The green point is a charge q lying inside the sphere at a distance p from the origin, the red point is the image of that point, having charge −qR/p, lying outside the sphere at a distance of R 2 /p from the origin. The potential produced by the two charges ...

  5. Elliptic operator - Wikipedia

    en.wikipedia.org/wiki/Elliptic_operator

    A solution to Laplace's equation defined on an annulus.The Laplace operator is the most famous example of an elliptic operator.. In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator.

  6. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...

  7. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  8. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion. The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made ...

  9. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...