Search results
Results from the WOW.Com Content Network
Satake (1966) reformulated the Ramanujan–Petersson conjecture in terms of automorphic representations for GL(2) as saying that the local components of automorphic representations lie in the principal series, and suggested this condition as a generalization of the Ramanujan–Petersson conjecture to automorphic forms on other groups. Another ...
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) ...
The first two properties were proved by Mordell (1917) and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures (specifically, he deduced it by applying them to a Kuga-Sato variety).
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒ErdÅ‘s–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
Flicker, Yuval Z.; Kazhdan, David A. (1989), Geometric Ramanujan conjecture and Drinfeld reciprocity law, Number theory, trace formulas and discrete groups, Symp. in Honor of Atle Selberg, Oslo/Norway 1987, 201-218 (1989).
Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...
This page was last edited on 5 June 2008, at 15:51 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...
Lafforgue's theorem implies the Ramanujan–Petersson conjecture that if an automorphic form for GL n (F) has central character of finite order, then the corresponding Hecke eigenvalues at every unramified place have absolute value 1.