enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dunn index - Wikipedia

    en.wikipedia.org/wiki/Dunn_index

    The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. [1] [2] This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself.

  3. Primary clustering - Wikipedia

    en.wikipedia.org/wiki/Primary_clustering

    In computer programming, primary clustering is a phenomenon that causes performance degradation in linear-probing hash tables.The phenomenon states that, as elements are added to a linear probing hash table, they have a tendency to cluster together into long runs (i.e., long contiguous regions of the hash table that contain no free slots).

  4. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  5. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  6. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    The numerator of the CH index is the between-cluster separation (BCSS) divided by its degrees of freedom. The number of degrees of freedom of BCSS is k - 1, since fixing the centroids of k - 1 clusters also determines the k th centroid, as its value makes the weighted sum of all centroids match the overall data centroid.

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...

  8. Leiden algorithm - Wikipedia

    en.wikipedia.org/wiki/Leiden_algorithm

    The Leiden algorithm is a community detection algorithm developed by Traag et al [1] at Leiden University.It was developed as a modification of the Louvain method.Like the Louvain method, the Leiden algorithm attempts to optimize modularity in extracting communities from networks; however, it addresses key issues present in the Louvain method, namely poorly connected communities and the ...

  9. Cobweb (clustering) - Wikipedia

    en.wikipedia.org/wiki/Cobweb_(clustering)

    COBWEB is an incremental system for hierarchical conceptual clustering. COBWEB was invented by Professor Douglas H. Fisher, currently at Vanderbilt University. [1] [2] COBWEB incrementally organizes observations into a classification tree. Each node in a classification tree represents a class (concept) and is labeled by a probabilistic concept ...