Search results
Results from the WOW.Com Content Network
L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2 ...
kg.m kg⋅m 1.0 kg⋅m (9.8 N⋅m; 7.2 lb⋅ft) kg.m Nm; kg.m lb.ft; Imperial & US customary: pound force-foot: lb.ft lb⋅ft 1.0 lb⋅ft (1.4 N⋅m) lb.ft Nm; lb.ft kg-m; Scientific: SI: newton-metre: N.m N⋅m Triple combinations are also possible. See the full list. 1.0 N⋅m (0.74 lbf⋅ft) N.m kgf.m; N.m lbf.ft; Non-SI metric: kilogram ...
newton meter squared per kilogram squared (N⋅m 2 /kg 2) shear modulus: pascal (Pa) or newton per square meter (N/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength: ampere per meter (A/m) Hamiltonian: joule (J)
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
The unit one (1) is the unit of a quantity of dimension one. It is the neutral element of any system of units. [2] In addition to the unit one, the SI defines 7 base units and associated symbols: The second (s) is the unit of time. The metre (m) is the unit of length. The kilogram (kg) is the unit of mass. The ampere (A) is the unit of electric ...
= 1 N = 1 kg⋅m/s 2: ounce-force: ozf ≡ g 0 × 1 oz = 0.278 013 850 953 781 25 N: pound-force: lbf: ≡ g 0 × 1 lb = 4.448 221 615 2605 N: poundal: pdl ≡ 1 lb⋅ft/s 2 = 0.138 254 954 376 N: short ton-force: tnf [citation needed] ≡ g 0 × 1 short ton = 8.896 443 230 521 × 10 3 N: sthene (mts unit) sn ≡ 1 t⋅m/s 2 = 10 3 N
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...