Search results
Results from the WOW.Com Content Network
Some useful resources for learning about e-agriculture in practice are the World Bank's e-sourcebook ICT in agriculture – connecting smallholder farmers to knowledge, networks and institutions (2011), [2] ICT uses for inclusive value chains (2013), [3] ICT uses for inclusive value chains (2013) [4] and Success stories on information and ...
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Machine learning may also provide predictions to farmers at the point of need, such as the contents of plant-available nitrogen in soil, to guide fertilization planning. [59] As more agriculture becomes ever more digital, machine learning will underpin efficient and precise farming with less manual labour.
Digital agriculture, sometimes known as smart farming or e-agriculture, [1] are tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture. The Food and Agriculture Organization of the United Nations has described the digitalization process of agriculture as the digital agricultural revolution . [ 2 ]
Deep learning is a type of machine learning that runs inputs through biologically inspired artificial neural networks for all of these types of learning. [ 48 ] Computational learning theory can assess learners by computational complexity , by sample complexity (how much data is required), or by other notions of optimization .
After planting, other agricultural machinery such as self-propelled sprayers can be used to apply fertilizer and pesticides. Agriculture sprayer application is a method to protect crops from weeds by using herbicides, fungicides, and insecticides. Spraying or planting a cover crop are ways to mix weed growth. [5]
Waikato Environment for Knowledge Analysis (Weka) is a collection of machine learning and data analysis free software licensed under the GNU General Public License.It was developed at the University of Waikato, New Zealand and is the companion software to the book "Data Mining: Practical Machine Learning Tools and Techniques".
Agricultural engineering, also known as agricultural and biosystems engineering, is the field of study and application of engineering science and designs principles for agriculture purposes, combining the various disciplines of mechanical, civil, electrical, food science, environmental, software, and chemical engineering to improve the efficiency of farms and agribusiness enterprises [1] as ...