enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets. The intersection of two sets and , denoted by , [3] is the set of all objects that are members of both the sets and .

  3. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The equivalence class of a set A under this relation, then, consists of all those sets which have the same cardinality as A. There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class.

  4. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    1. The difference of two sets: x~y is the set of elements of x not in y. 2. An equivalence relation \ The difference of two sets: x\y is the set of elements of x not in y. − The difference of two sets: x−y is the set of elements of x not in y. ≈ Has the same cardinality as × A product of sets / A quotient of a set by an equivalence ...

  5. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The oldest definition of the cardinality of a set X (implicit in Cantor and explicit in Frege and Principia Mathematica) is as the set of all sets that are equinumerous with X: this does not work in ZFC or other related systems of axiomatic set theory because this collection is too large to be a set, but it does work in type theory and in New ...

  6. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets A, B and C is given by

  7. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex.

  8. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  9. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    A set A is said to have cardinality smaller than or equal to the cardinality of a set B, if there exists a one-to-one function (an injection) from A into B. This is denoted |A| ≤ |B|. If A and B are not equinumerous, then the cardinality of A is said to be strictly smaller than the cardinality of B. This is denoted |A| < |B|.