Search results
Results from the WOW.Com Content Network
When radians (rad) are employed, the angle is given as the length of the arc of the unit circle subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete turn (360°) is an angle of 2 π (≈ 6.28) rad.
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since sin ( x ) = cos ( x − π / 2 ) , {\displaystyle \sin(x)=\cos(x-\pi /2),} the case of a sine can be omitted from this definition.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
A comparison of angles expressed in degrees and radians. The number 2 π (approximately 6.28) is the ratio of a circle's circumference to its radius, and the number of radians in one turn. The meaning of the symbol was not originally fixed to the ratio of the circumference and the diameter.
Hence an angle of 1.2 radians would be written today as 1.2 rad; archaic notations include 1.2 r, 1.2 rad, 1.2 c, or 1.2 R. In mathematical writing, the symbol "rad" is often omitted. When quantifying an angle in the absence of any symbol, radians are assumed, and when degrees are meant, the degree sign ° is used.
A great circle transforms to another great circle under rotations, leaving always a diameter of the sphere in its original position. Figure 2: A rotation represented by an Euler axis and angle. In three dimensions, angular displacement is an entity with a direction and a magnitude.
where A is the area of an epicycloid with the smaller circle of radius r and the larger circle of radius kr (), assuming the initial point lies on the larger circle. A = ( − 1 ) k + 3 8 π a 2 {\displaystyle A={\frac {(-1)^{k}+3}{8}}\pi a^{2}}