Search results
Results from the WOW.Com Content Network
(this can be adapted to handle decay branches). While this can be solved explicitly for i = 2, the formulas quickly become cumbersome for longer chains. [3] The Bateman equation is a classical master equation where the transition rates are only allowed from one species (i) to the next (i+1) but never in the reverse sense (i+1 to i is forbidden).
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
The decay correct might be used this way: a group of 20 animals is injected with a compound of interest on a Monday at 10:00 a.m. The compound is chemically joined to the isotope copper-64, which has a known half-life of 12.7 hours, or 764 minutes.
Specific activity (symbol a) is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. [1] [2] It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activity is the curie per gram (Ci/g).
Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).
CDE is defined by the United States Nuclear Regulatory Commission in Title 10, Section 20.1003, of the Code of Federal Regulations (10 CFR 20.1003), such that "The Committed dose equivalent, CDE (H T,50) is the dose to some specific organ or tissue of reference (T) that will be received from an intake of radioactive material by an individual during the 50-year period following the intake".
In 1917, glow-in-the-dark watches were all the rage. But the girls who painted them with radioactive paint weren’t told how dangerous it was.
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]