Search results
Results from the WOW.Com Content Network
In statistical physics, the kinetic theory of gases applies Newton's laws of motion to large numbers (typically on the order of the Avogadro number) of particles. Kinetic theory can explain, for example, the pressure that a gas exerts upon the container holding it as the aggregate of many impacts of atoms, each imparting a tiny amount of momentum.
At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
Newton's second law, with mass fixed, is not invariant under a Lorentz transformation. However, it can be made invariant by making the inertial mass m of an object a function of velocity: =; m 0 is the object's invariant mass. [53] The modified momentum, =,
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws , where force is inversely proportional to the square of the distance between the bodies.
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.
It is an equation of state that relates the pressure, temperature, and molar volume in a fluid. However, it can be written in terms of other, equivalent, properties in place of the molar volume, for example specific volume, or number density. The equation modifies the ideal gas law in two ways. First its particles have a finite diameter ...
The density of states related to volume V and N countable energy levels is defined as: = = (()). Because the smallest allowed change of momentum for a particle in a box of dimension and length is () = (/), the volume-related density of states for continuous energy levels is obtained in the limit as ():= (()), Here, is the spatial dimension of the considered system and the wave vector.