Search results
Results from the WOW.Com Content Network
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
Plant pigments usually utilize the last two of these reactions to convert the sun's energy into their own. This initial charge separation occurs in less than 10 picoseconds (10 -11 seconds). In their high-energy states, the special pigment and the acceptor could undergo charge recombination; that is, the electron on the acceptor could move back ...
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.
At the center of the reaction center is a special pair of chlorophyll molecules. Each PSII has about 8 LHCII. These contain about 14 chlorophyll a and chlorophyll b molecules, as well as about four carotenoids. In the reaction center of PSII of plants and cyanobacteria, the light energy is used to split water into oxygen, protons, and electrons.
Redox reactions are chemical reactions in which electrons are transferred from a donor molecule to an acceptor molecule. The underlying force driving these reactions is the Gibbs free energy of the reactants relative to the products. If donor and acceptor (the reactants) are of higher free energy than the reaction products, the electron ...
Although cellular respiration is technically a combustion reaction, it is an unusual one because of the slow, controlled release of energy from the series of reactions. Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent is molecular oxygen (O 2).
28.2% (sunlight energy collected by chlorophyll) → 68% is lost in conversion of ATP and NADPH to d-glucose, leaving; 9% (collected as sugar) → 35–40% of sugar is recycled/consumed by the leaf in dark and photo-respiration, leaving; 5.4% net leaf efficiency. Many plants lose much of the remaining energy on growing roots.
This acidification of the cell wall region activates enzymes known as expansins which disrupt hydrogen bonds in the cell wall structure, making the cell walls less rigid. In addition, increased proton pump activity leads to more solutes entering the plant cells on the dark side of the plant, which increases the osmotic gradient between the ...