Search results
Results from the WOW.Com Content Network
In computer science, a control-flow graph (CFG) is a representation, using graph notation, of all paths that might be traversed through a program during its execution. The control-flow graph was discovered by Frances E. Allen , [ 1 ] who noted that Reese T. Prosser used boolean connectivity matrices for flow analysis before.
Corresponding dominator tree of the control flow graph. In computer science, a node d of a control-flow graph dominates a node n if every path from the entry node to n must go through d. Notationally, this is written as d dom n (or sometimes d ≫ n). By definition, every node dominates itself. There are a number of related concepts:
If a (connected) control-flow graph is considered a one-dimensional CW complex called , the fundamental group of will be (). The value of n + 1 {\displaystyle n+1} is the cyclomatic complexity. The fundamental group counts how many loops there are through the graph up to homotopy, aligning as expected.
In software engineering, basis path testing, or structured testing, [1] is a white box method for designing test cases.The method analyzes the control-flow graph of a program to find a set of linearly independent paths of execution.
Within an imperative programming language, a control flow statement is a statement that results in a choice being made as to which of two or more paths to follow. For non-strict functional languages, functions and language constructs exist to achieve the same result, but they are usually not termed control flow statements.
Essential complexity is a numerical measure defined by Thomas J. McCabe, Sr., in his highly cited, 1976 paper better known for introducing cyclomatic complexity.McCabe defined essential complexity as the cyclomatic complexity of the reduced CFG (control-flow graph) after iteratively replacing (reducing) all structured programming control structures, i.e. those having a single entry point and a ...
Control-flow diagrams were developed in the 1950s, and are widely used in multiple engineering disciplines. They are one of the classic business process modeling methodologies, along with flow charts, drakon-charts, data flow diagrams, functional flow block diagram, Gantt charts, PERT diagrams, and IDEF. [2]
In computer science, control-flow analysis (CFA) is a static-code-analysis technique for determining the control flow of a program. The control flow is expressed as a control-flow graph (CFG). For both functional programming languages and object-oriented programming languages, the term CFA, and elaborations such as k-CFA, refer to specific ...