enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    A demo for Prim's algorithm based on Euclidean distance. In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The ...

  3. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Otherwise, let p now equal this new number (which is the next prime), and repeat from step 3. When the algorithm terminates, the numbers remaining not marked in the list are all the primes below n. The main idea here is that every value given to p will be prime, because if it were composite it would be marked as a multiple of some other ...

  4. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  5. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor.

  6. Minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree

    Each Boruvka step takes linear time. Since the number of vertices is reduced by at least half in each step, Boruvka's algorithm takes O(m log n) time. [4] A second algorithm is Prim's algorithm, which was invented by VojtÄ›ch Jarník in 1930 and rediscovered by Prim in 1957 and Dijkstra in 1959. Basically, it grows the MST (T) one edge at a time.

  7. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  8. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    In the second step, any natural number c that divides both a and b (in other words, any common divisor of a and b) divides the remainders r k. By definition, a and b can be written as multiples of c: a = mc and b = nc, where m and n are natural numbers. Therefore, c divides the initial remainder r 0, since r 0 = a − q 0 b = mc − q 0 nc = (m ...

  9. Parallel algorithms for minimum spanning trees - Wikipedia

    en.wikipedia.org/wiki/Parallel_algorithms_for...

    Observe the graph that consists solely of edges collected in the previous step. These edges are directed away from the vertex to which they are the lightest incident edge. The resulting graph decomposes into multiple weakly connected components. The goal of this step is to assign to each vertex the component of which it is a part.