Search results
Results from the WOW.Com Content Network
The set {x: x is a prime number greater than 10} is a proper subset of {x: x is an odd number greater than 10} The set of natural numbers is a proper subset of the set of rational numbers; likewise, the set of points in a line segment is a proper subset of the set of points in a line.
The set of natural numbers is a subset of , which in turn is a subset of the set of all rational numbers, itself a subset of the real numbers. [ a ] Like the set of natural numbers, the set of integers Z {\displaystyle \mathbb {Z} } is countably infinite .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
For any non-empty set X, P = { X} is a partition of X, called the trivial partition. Particularly, every singleton set {x} has exactly one partition, namely { {x} }. For any non-empty proper subset A of a set U, the set A together with its complement form a partition of U, namely, { A, U ∖ A}.
In combinatorics or computer science, sometimes [] with denotes the set {,,, …,} of positive integers up to n, with [] =. Image of a subset : if S is a subset of the domain of the function f , then f [ S ] {\displaystyle f[S]} is sometimes used for denoting the image of S .
As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted U. The range is the set of subsets of U called the power set of U and denoted P(U). Thus the relation is a subset of U × P(U). The converse relation is a subset of P(U) × U.
Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because > for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also.