Search results
Results from the WOW.Com Content Network
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
For a primitive () th root x, the number () / is a primitive th root of unity. If k does not divide λ ( n ) {\displaystyle \lambda (n)} , then there will be no k th roots of unity, at all. Finding multiple primitive k th roots modulo n
Both 2 and 3 are primitive λ-roots modulo 5 and also primitive roots modulo 5. n = 8. The set of numbers less than and coprime to 8 is {1,3,5,7} . Hence φ(8) = 4 and λ(8) must be a divisor of 4. In fact λ(8) = 2 since (). The primitive λ-roots modulo 8 are 3, 5, and 7. There are no primitive roots modulo 8.
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
Weisstein, Eric W. "Primitive Root". MathWorld. Web-based tool to interactively compute group tables by John Jones; OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups:
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
Primitive root modulo m: A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that g k ≡ a (mod m). A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer.
If the modulus and conductor are equal the character is primitive, otherwise imprimitive. An imprimitive character is induced by the character for the smallest modulus: χ 16 , 9 {\displaystyle \chi _{16,9}} is induced from χ 8 , 5 {\displaystyle \chi _{8,5}} and χ 16 , 15 {\displaystyle \chi _{16,15}} and χ 8 , 7 {\displaystyle \chi _{8,7 ...