Search results
Results from the WOW.Com Content Network
Artificial transcription factors (ATFs) are engineered individual or multi molecule transcription factors that either activate or repress gene transcription (biology). [1] ATFs often contain two main components linked together, a DNA-binding domain and a regulatory domain, also known as an effector domain or modulatory domain. [1]
Illustration of an activator. In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence.
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
Activating transcription factor, ATF, is a group of bZIP transcription factors, which act as homodimers or heterodimers with a range of other bZIP factors. [1] First, they have been described as members of the CREB/ATF family, [2] whereas it turned out later that some of them might be more similar to AP-1-like factors such as c-Jun or c-Fos. [3]
The SunTag activator system uses the dCas9 protein, which is modified to be linked with the SunTag. The SunTag is a repeating polypeptide array that can recruit multiple copies of antibodies. Through attaching transcriptional factors on the antibodies, the SunTag dCas9 activating complex amplifies its recruitment of transcriptional factors.
An inactive enhancer may be bound by an inactive transcription factor. Phosphorylation of the transcription factor may activate it and that activated transcription factor may then activate the enhancer to which it is bound (see small red star representing phosphorylation of a transcription factor bound to an enhancer in the illustration). [44]
The TCF/LEF family (T cell factor/lymphoid enhancer factor family) is a group of genes that encode transcription factors which bind to DNA through a SOX-like high mobility group domain. They are involved in the Wnt signaling pathway , particularly during embryonic [ 2 ] and stem-cell development, [ 3 ] but also had been found to play a role in ...
E2F is a group of genes that encodes a family of transcription factors (TF) in higher eukaryotes. Three of them are activators: E2F1, 2 and E2F3a. Six others act as repressors: E2F3b, E2F4-8. All of them are involved in the cell cycle regulation and synthesis of DNA in mammalian cells.