enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    For an open thermodynamic system in which heat and work are transferred by paths separate from the paths for transfer of matter, using this generic balance equation, with respect to the rate of change with time of the extensive quantity entropy , the entropy balance equation is: [53] [54] [note 1] = = ˙ ^ + ˙ + ˙ where = ˙ ^ is the net rate ...

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Entropy in information theory is directly analogous to the entropy in statistical thermodynamics. The analogy results when the values of the random variable designate energies of microstates, so Gibbs's formula for the entropy is formally identical to Shannon's formula.

  4. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Thus the definitions of entropy in statistical mechanics (The Gibbs entropy formula = ⁡) and in classical thermodynamics (=, and the fundamental thermodynamic relation) are equivalent for microcanonical ensemble, and statistical ensembles describing a thermodynamic system in equilibrium with a reservoir, such as the canonical ensemble, grand ...

  5. Boltzmann's entropy formula - Wikipedia

    en.wikipedia.org/wiki/Boltzmann's_entropy_formula

    Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:

  6. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...

  7. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    As the entropy is a function of state the result is independent of the path. The above relation shows that the determination of the entropy requires knowledge of the heat capacity and the equation of state (which is the relation between P,V, and T of the substance involved). Normally these are complicated functions and numerical integration is ...

  8. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."

  9. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The connection between thermodynamic entropy and information entropy is given by Boltzmann's equation, which says that S = k B ln W. If we take the base-2 logarithm of W, it will yield the average number of questions we must ask about the microstate of the physical system in order to determine its macrostate. [13]