enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Luminous efficiency function - Wikipedia

    en.wikipedia.org/wiki/Luminous_efficiency_function

    The small excess fractional value comes from the slight mismatch between the definition of the lumen and the peak of the luminosity function. The lumen is defined to be unity for a radiant energy of 1/683 W at a frequency of 540 THz , which corresponds to a standard air wavelength of 555.016 nm rather than 555 nm , which is the peak of the ...

  3. Luminous efficacy - Wikipedia

    en.wikipedia.org/wiki/Luminous_efficacy

    Luminous efficacy can be normalized by the maximum possible luminous efficacy to a dimensionless quantity called luminous efficiency.The distinction between efficacy and efficiency is not always carefully maintained in published sources, so it is not uncommon to see "efficiencies" expressed in lumens per watt, or "efficacies" expressed as a percentage.

  4. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency). These are the points at which the respective Planck-law functions ⁠ 1 / λ 5 ⁠ , ν 3 and ⁠ ν 2 / λ 2 ⁠ , respectively, divided by exp ( ⁠ hν / k B T ⁠ ) − 1 attain their maxima.

  5. Cosmic microwave background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave_background

    The peaks contain interesting physical signatures. The angular scale of the first peak determines the curvature of the universe (but not the topology of the universe). The next peak—ratio of the odd peaks to the even peaks—determines the reduced baryon density. [68] The third peak can be used to get information about the dark-matter density ...

  6. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).

  7. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    Intensity is used most frequently with waves such as acoustic waves , matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred.

  8. Luminous flux - Wikipedia

    en.wikipedia.org/wiki/Luminous_flux

    The luminous flux accounts for the sensitivity of the eye by weighting the power at each wavelength with the luminosity function, which represents the eye's response to different wavelengths. The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute.

  9. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law, the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths. The energy emitted at ...