Search results
Results from the WOW.Com Content Network
The machine will perform the following three steps on any odd number until only one 1 remains: Append 1 to the (right) end of the number in binary (giving 2n + 1); Add this to the original number by binary addition (giving 2n + 1 + n = 3n + 1); Remove all trailing 0 s (that is, repeatedly divide by 2 until the result is odd).
In this case, the term following 21 would be 1112 ("one 1, one 2") and the term following 3112 would be 211213 ("two 1s, one 2 and one 3"). These sequences differ in several notable ways from the look-and-say sequence. Notably, unlike the Conway sequences, a given term of the pea pattern does not uniquely define the preceding term.
In base 10, the following steps always yield 1089: Take any three-digit number where the first and last digits differ by more than 1. Reverse the digits, and subtract the smaller from the larger one. Add to this result the number produced by reversing its digits. For example, if the spectator chooses 237 (or 732): 732 − 237 = 495 495 + 594 = 1089
In numerology, patterns always come in sets of three's. The more repetition of a number, the better. "Whenever we see one number repeated more than once, the more it gets repeated, the stronger it ...
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.
where is the number of terms in the progression and is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of a discrete uniform distribution , interpreting the arithmetic progression as a set of equally probable outcomes.
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.