Search results
Results from the WOW.Com Content Network
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal.Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas.
Consider the average number of particles with particle properties denoted by a particle state vector (x,r) (where x corresponds to particle properties like size, density, etc. also known as internal coordinates and, r corresponds to spatial position or external coordinates) dispersed in a continuous phase defined by a phase vector Y(r,t) (which again is a function of all such vectors which ...
Biocrystallization is the formation of crystals from organic macromolecules by living organisms. [1] This may be a stress response, a normal part of metabolism such as processes that dispose of waste compounds, or a pathology. Template mediated crystallization is qualitatively different from in vitro crystallization.
Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites. [1] [2] Polymers can crystallize upon cooling from melting, mechanical stretching or solvent evaporation ...
Developing protein crystals is a difficult process influenced by many factors, including pH, temperature, ionic strength in the crystallization solution, and even gravity. [3] Once formed, these crystals can be used in structural biology to study the molecular structure of the protein, particularly for various industrial or medical purposes.
Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) [1] is a purification technique that utilizes the reduced solubility of certain molecules in a solution of very high ionic strength.
Crystals of amethyst quartz Microscopically, a single crystal has atoms in a near-perfect periodic arrangement; a polycrystal is composed of many microscopic crystals (called "crystallites" or "grains"); and an amorphous solid (such as glass) has no periodic arrangement even microscopically.
Crystallography is used by materials scientists to characterize different materials. In single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically because the natural shapes of crystals reflect the atomic structure. In addition, physical properties are often controlled by crystalline defects.