Search results
Results from the WOW.Com Content Network
If is a linear transformation mapping to and is a column vector with entries, then = for some matrix , called the transformation matrix of . [ citation needed ] Note that A {\displaystyle A} has m {\displaystyle m} rows and n {\displaystyle n} columns, whereas the transformation T {\displaystyle T} is from R n {\displaystyle \mathbb {R} ^{n ...
Thus every shear matrix has an inverse, and the inverse is simply a shear matrix with the shear element negated, representing a shear transformation in the opposite direction. In fact, this is part of an easily derived more general result: if S is a shear matrix with shear element λ, then S n is a shear matrix whose shear element is simply nλ.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
The matrix Q is the change of basis matrix of the similarity transformation. Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ.
This new matrix A 3 is the upper triangular matrix needed to perform an iteration of the QR decomposition. Q is now formed using the transpose of the rotation matrices in the following manner: Q = G 1 T G 2 T . {\displaystyle Q=G_{1}^{T}\,G_{2}^{T}.}
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ( A B C ) = ( C T ⊗ A ) vec ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...
By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO(3).
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).